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The dose response prediction problem

Problem motivated by NCI’'s Molecular Profiling-Based Assignment of Cancer
Therapy (MPACT) clinical trial study
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Presents a challenging data driven modeling problem with large input feature dimensions
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Focusing on two prediction problems
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Investigating the use of unsupervised feature
learning

Big Data Hypothesis:
larger unlabeled collections of observations: tumors, normal tissue, chemical compounds can

be used to learn descriptive features
GDC: includes gene expression for 11,574 tumors (and related normal tissue)
ChEMBL.: public repository of 1.6 million compounds

models (or encodings) of smaller subsets of features can be transferred to smaller pre-
clinical trial data to improve accuracy of dose response predictions
cell line models applied to patient derived tumor models

Mechanisms of Action Hypothesis:
feature learning can help inform and be informed by biological models

{ Transfer Learning Hypothesis:
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Experimental data for model evaluation

= NCI-60: 60 cell lines
— Each cell line has microarray gene expression, protein, miRNA, SNP, (RNAseq
in progress).
— 5-dose response measurements for 52,672 compounds.
« Size of individual cell culture measured after an initial 24 hour incubation period
(“Time Zero”). ~5K — 40K cells depending on cell/tumor type.
 Size of cell culture growth measured after 48 hours with initial compound treatment
and without compound treatment (control)
 Ratio reports change in tumor size relative to control.
- 0 ->drug has no impact on tumor growth

- -100 -> tumor exhibits large reduction in size
- 100 -> tumor exhibits large increase in size

= Other labeled datasets being examined:
— CCLE, GDSC: Additional cell line repositories, with more (~1K) cell lines but

future drugs tested.
— Ultimate goal is application to new patient derived tumors being established

at Frederick National Laboratory (NCI).
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Scalable deep learning tools used to explore
feature representation space

= Learn 500 dimension feature representation on 50K chemical compounds from 5000
dimension input feature: ~6 hours x 24 cores x 16 nodes x 104 runs = ~239,616 CPU hours

Experiments run using Livermore Big Artificial Neural Network (LBANN)
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Autoencoders show potential to retain
information for downstream prediction
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Next steps

= Evaluate feature learning with larger unlabeled dataset -
ChEMBL's 1.6 million compound library

= Evaluate response prediction on novel compound classes, not
just near neighbors.

= Incorporate new molecular features, such as gene expression
and SNPs

= Explore methods to guide model complexity reduction and
integrate models with biological knowledge (no time to discuss
today)
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Framework for developing predictive models

Compile and maintain modeling data
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Francisco Azuaje Brief Bioinform 2016;bib.bbw065

Improve drug treatment selection for patient

Increase understanding of drug efficacy mechanisms
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Cancer pilot is a multi-laboratory effort

— Rick Stevens (Lead), Fangfang Xia, Maulik Shukla (ANL)
— Yvonne Evrand, Susan Holbeck (NCI / Frederick)

— Jason Gans, Judith Cohn, John Hodge (LANL)

— Adam Zemla, Marisa Torres (LLNL)
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Deeper networks show potential to learn
novel feature encoding

= Gene expression feature encoding (5-fold cross validation)

Experiments run using Livermore Big Artificial Neural Network (LBANN)
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Data size of 60,483 features x 11,574 examples
presents a computational challenge

. . ",l
Lawrence Livermore National Laboratory N A‘S’Q‘-‘?ﬁ 12
National Nuclear Security Administration

LLNL-PRES-730619



Non-linear feature encoding improves performance
in some conditions

Unsupervised feature selection evaluation
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Indicates potential to find more robust molecular features with auotencoder
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